Functional and molecular characterization of the K-Cl cotransporter of Xenopus laevis oocytes.

نویسندگان

  • A Mercado
  • P de los Heros
  • N Vázquez
  • P Meade
  • D B Mount
  • G Gamba
چکیده

The K-Cl cotransporters (KCCs) have a broad range of physiological roles, in a number of cells and species. We report here that Xenopus laevis oocytes express a K-Cl cotransporter with significant functional and molecular similarity to mammalian KCCs. Under isotonic conditions, defolliculated oocytes exhibit a Cl(-)-dependent (86)Rb(+) uptake mechanism after activation by the cysteine-reactive compounds N-ethylmaleimide (NEM) and mercuric chloride (HgCl(2)). The activation of this K-Cl cotransporter by cell swelling is prevented by inhibition of protein phosphatase-1 with calyculin A; NEM activation of the transporter was not blocked by phosphatase inhibition. Kinetic characterization reveals apparent values for the Michaelis-Menten constant of 27.7 +/- 3.0 and 15.4 +/- 4.7 mM for Rb(+) and Cl(-), respectively, with an anion selectivity for K(+) transport of Cl(-) = PO(4)(3-) = Br(-) > I(-) > SCN(-) > gluconate. The oocyte K-Cl cotransporter was sensitive to several inhibitors, including loop diuretics, with apparent half-maximal inhibition values of 200 and 500 microM for furosemide and bumetanide, respectively. A partial cDNA encoding the Xenopus K-Cl cotransporter was cloned from oocyte RNA; the corresponding transcript is widely expressed in Xenopus tissues. The predicted COOH-terminal protein fragment exhibited particular homology to the KCC1/KCC3 subgroup of the mammalian KCCs, and the functional characteristics are the most similar to those of KCC1 (Mercado A, Song L, Vazquez N, Mount DB, and Gamba G. J Biol Chem 275: 30326--30334, 2000).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney.

Electrically silent Na(+)-(K+)-Cl- transporter systems are present in a wide variety of cells and serve diverse physiological functions. In chloride secretory and absorbing epithelia, these cotransporters provide the chloride entry mechanism crucial for transcellular chloride transport. We have isolated cDNAs encoding the two major electroneutral sodium-chloride transporters present in the mamm...

متن کامل

Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family.

The K+-Cl- cotransporters (KCCs) belong to the gene family of electroneutral cation-chloride cotransporters, which also includes two bumetanide-sensitive Na+-K+-2Cl- cotransporters and a thiazide-sensitive Na+-Cl- cotransporter. We have cloned cDNAs encoding mouse KCC3, human KCC3, and human KCC4, three new members of this gene family. The KCC3 and KCC4 cDNAs predict proteins of 1083 and 1150 a...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

A Trafficking-Deficient Mutant of KCC3 Reveals Dominant-Negative Effects on K–Cl Cotransport Function

The K-Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 281 2  شماره 

صفحات  -

تاریخ انتشار 2001